Technical Assessment and Policy Analysis of Bio-Oil Production From Rice Straw
Lisa Stephanie H. Dizon1*, Rex B. Demafelis1
, Sergio C. Capareda2
, Amado L. Maglinao Jr. 2
, Jovita
L. Movillon1
, Manolito E. Bambase Jr.1
, Kristel M. Gatdula, and Agnes C. Rola3
11Department of Chemical Engineering (DChE), College of Engineering and Agro-industrial Technology (CEAT),
University of the Philippines Los Baños (UPLB), 4031 College, Laguna, Philippines; 2Department of Biological and
Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States of America (USA);
3
Institute of Governance and Rural Development, College of Public Affairs and Development, UPLB, College,
Laguna 4031, Philippines. *Corresponding author, lhdizon1@up.edu.ph
Abstract
Pyrolysis of rice straw using a fixed bed-batch reactor was investigated to determine the
effects of varying pyrolysis temperature (300oC, 400oC, and 500oC) and heating rate (low (0.2-
2.0oC min-1), high (2.6-7.2 oC min-1)) on pyrolysis products yield and composition. Bio-oil is a
liquid fuel that may be refined or upgraded for advanced biofuels production. The gas product
can be further utilized for energy production while biochar is used for combustion, for food
and beverage industry as activated carbon and for waste treatment facility. A D-optimal
coordinate exchange design of experiment was implemented and based on the results, the
highest bio-oil yield obtained was 19.77% ww-1 at 400°C and low heating rate. The highest
biochar yield (71.77% ww-1) was achieved at 300°C and high heating rate while the highest
yield for gaseous product is equivalent to 19.65% under the conditions: 500°C and high
heating rate. Compositional analysis of bio-oil via GC-MS was done to identify the
compounds present which include N-containing compounds (amines and amides),
oxygenates (carboxylic acids and ethers), aliphatics and aromatics. The physico-chemical
characteristics of biochar were also determined. The H-C ratio of biochar ranges from 0.60 to
0.85 while the O-C ratio is between 0.16 to 0.22 which falls within the coal region suggesting
that biochar has the potential use as solid fuels. The components of the gaseous product
were also identified through GC and found to be mainly composed of H2
, O2
, N2
, CO, CH4
, CO2
,
C2H4
, C2H6
, C3H6
and C3H8
. Based on the policy analysis, it is recommended that rice straw
conversion to bio-oil via pyrolysis should be adopted and implemented since the social
benefit-cost analysis (SBCA) resulted to a benefit-to-cost ratio of 2.90 where the benefits are
higher than the costs.
Keywords: bio-oil, policy analysis, pyrolysis, rice straw, SBCA
Vol 45 - 2 August 2020